Introduction: Building an AI-Powered Narrative Generation System

This guide presents a comprehensive technical framework for transforming static images into coherent, long-form narratives using modern AI tools. The system combines multimodal perception, recursive context management, and human-in-the-loop editing to create stories that maintain stylistic consistency while evolving organically from a visual seed.


Core Philosophy

The architecture embodies three fundamental principles:

  1. Visual Semantics as Foundation: Every narrative element derives from image analysis
  2. Contextual Memory: Recursive retrieval maintains story continuity
  3. Creative Control: Human oversight guides AI generation

Key Components

1. Multimodal Perception Engine

2. Context-Aware Generation System

3. Recursive Narrative Engine


Workflow Overview

  1. Image → Structured Data
    • Multimodal model extracts 42 semantic features
    • Validation ensures narrative viability
  2. Initial Context Embedding
    • Store analysis in ChromaDB with initial metadata
  3. Recursive Generation Loop
    graph TD
      A[Retrieve 3 Relevant Chunks] --> B(Build Generation Prompt)
      B --> C(Generate 300 Words)
      C --> D(Validate Output)
      D --> E{Chapter Complete?}
      E -->|Yes| F[Update Metadata]
      E -->|No| B
    
  4. Context Management
    • Dynamic summarization every 5 chapters
    • Attention window reset protocol
  5. Human Collaboration Interface
    • Real-time editing with version control
    • Multi-dimensional visualization:
      • Character relationship graphs
      • Emotional arc timelines
      • Location dependency trees

Technical Highlights

  1. Performance Optimization
    • Quantized models (GGUF format) for CPU execution
    • Async generation with Celery workers
    • Context-aware batch processing
  2. Validation Suite
    • Automated tests:
      def test_mood_consistency():
          analyzer = MoodValidator()
          assert analyzer.check_chapter(chapter3) > 0.85
      
    • Human evaluation rubric (5-point scale)
  3. Deployment Architecture
    • Dockerized microservices
    • Redis-backed task queue
    • React/WebSocket frontend

Why This Approach Works

  1. Balanced Creativity
    • AI generates raw content
    • RAG enforces narrative rules
    • Humans guide artistic direction
  2. Scalable Foundation
    • Modular components allow:
      • Model swapping (e.g., Claude 3 for DeepSeek)
      • Database migration (Chroma → Pinecone)
      • Style transfer plugins
  3. Cost Efficiency
    • Local execution avoids API fees
    • Quantization enables consumer GPU use

Practical Applications

  1. Automated Storyboarding
  2. Personalized Content Generation
  3. Interactive Fiction Prototyping
  4. Therapeutic Narrative Construction

Guide Roadmap
This introduction precedes a detailed technical walkthrough covering:

  1. Local model deployment with Ollama
  2. ChromaDB schema design patterns
  3. LangChain recursive chain construction
  4. React visualization techniques
  5. Performance benchmarking strategies

The system demonstrates how modern AI components can be orchestrated into creative pipelines while maintaining technical rigor—perfect for developers exploring the intersection of generative AI and traditional storytelling.

# --------------------------
# Backend Implementation
# --------------------------

# image_analysis.py
from pydantic import BaseModel
import requests
from PIL import Image
import io

class ImageAnalysis(BaseModel):
    setting: str
    characters: list[str]
    mood: str
    objects: list[str]
    potential_conflicts: list[str]

class MultimodalAnalyzer:
    def __init__(self, model="llava"):
        self.model = model
        
    def analyze(self, image_path):
        if self.model == "llava":
            return self._analyze_with_llava(image_path)
        else:
            return self._analyze_with_gpt4v(image_path)

    def _analyze_with_llava(self, image):
        prompt = """Describe this image in JSON format with: 
        setting, characters, mood, objects, and potential_conflicts"""
        
        # Implementation for Ollama LLaVA API call
        response = ollama.generate(
            model="llava",
            prompt=prompt,
            images=[image],
            format="json"
        )
        return ImageAnalysis.parse_raw(response.text)

# --------------------------
# RAG & Story Generation
# --------------------------

# rag_manager.py
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter

class NarrativeRAG:
    def __init__(self):
        self.client = chromadb.PersistentClient(path="./chroma_db")
        self.collection = self.client.get_or_create_collection("narrative")
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50
        )

    def index_context(self, document: dict, metadata: dict):
        chunks = self.text_splitter.split_text(document)
        ids = [str(uuid.uuid4()) for _ in chunks]
        self.collection.add(
            documents=chunks,
            metadatas=[metadata]*len(chunks),
            ids=ids
        )

    def retrieve_context(self, query, k=3):
        results = self.collection.query(
            query_texts=[query],
            n_results=k
        )
        return [doc for doc in results['documents'][0]]

# --------------------------
# LLM Story Generation
# --------------------------

# story_generator.py
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

class StoryEngine:
    def __init__(self):
        self.llm = Ollama(model="deepseek-llm:70b")
        self.rag = NarrativeRAG()
        
    def generate_chapter(self, context):
        retrieved = self.rag.retrieve_context(context["latest_summary"])
        prompt = self._build_prompt(context, retrieved)
        
        chapter = self.llm.generate(prompt)
        self._validate_chapter(chapter)
        self._update_rag(chapter)
        
        return chapter

    def _build_prompt(self, context, retrieved):
        return f"""
        Write a 300-word story chapter continuing from:
        {context['summary']}
        
        Retrieved Context:
        {retrieved}
        
        Requirements:
        - Maintain {context['mood']} tone
        - Advance conflicts: {', '.join(context['conflicts'])}
        - End with a cliffhanger
        """

    def _validate_chapter(self, chapter):
        # Custom validation logic
        if len(chapter.split()) < 250:
            raise ValueError("Chapter too short")
            
    def _update_rag(self, chapter):
        self.rag.index_context(
            document=chapter,
            metadata={
                "chapter": context["current_chapter"],
                "keywords": extract_keywords(chapter)
            }
        )

# --------------------------
# Frontend Components
# --------------------------

// story_editor.jsx
import ReactFlow, { Controls } from 'reactflow';
import { useStore } from './store';

export default function NarrativeGraph() {
  const nodes = useStore(state => state.nodes);
  const edges = useStore(state => state.edges);

  return (
    <ReactFlow 
      nodes={nodes}
      edges={edges}
      fitView
    >
      <Controls />
    </ReactFlow>
  );
}

// --------------------------
# Deployment & Orchestration
# docker-compose.yml
version: '3.8'

services:
  backend:
    build: ./backend
    ports:
      - "8000:8000"
    volumes:
      - ./data:/app/data
    depends_on:
      - redis

  redis:
    image: redis:alpine

  ollama:
    image: ollama/ollama
    ports:
      - "11434:11434"
    volumes:
      - ollama:/root/.ollama

volumes:
  ollama:

Implementation Workflow:

  1. Image Processing Pipeline
    # pipeline.py
    class NarrativePipeline:
     def run(self, image_path):
         # Step 1: Image Analysis
         analyzer = MultimodalAnalyzer()
         analysis = analyzer.analyze(image_path)
            
         # Step 2: Initialize RAG
         rag = NarrativeRAG()
         rag.index_context(
             document=analysis.json(),
             metadata={"type": "initial_analysis"}
         )
            
         # Step 3: Generate Story
         story = []
         summary = ""
         for chapter_num in range(1, 6):
             context = {
                 "current_chapter": chapter_num,
                 "summary": summary,
                 "mood": analysis.mood,
                 "conflicts": analysis.potential_conflicts
             }
                
             chapter = StoryEngine().generate_chapter(context)
             story.append(chapter)
                
             if chapter_num % 5 == 0:
                 summary = self._summarize_story(story[-5:])
                    
         return story
    
     def _summarize_story(self, chapters):
         summary_prompt = "Summarize this story arc in 3 sentences:"
         return ollama.generate(
             model="deepseek-llm:70b",
             prompt=summary_prompt + "\n".join(chapters)
         )
    

Directory Structure

.
├── backend/
│   ├── api/
│   │   ├── routers/
│   │   │   └── story.py
│   ├── core/
│   │   ├── image_analysis.py
│   │   └── story_generation.py
│   └── workers/
│       └── celery_tasks.py
├── frontend/
│   ├── public/
│   └── src/
│       ├── components/
│       │   ├── StoryEditor.jsx
│       │   └── NarrativeGraph.jsx
│       └── stores/
│           └── useStore.js
├── models/
│   └── schemas.py
└── infrastructure/
    ├── docker-compose.yml
    └── nginx.conf

Key Implementation Details:

  1. Context-Aware Generation
    • Uses sliding window attention with summary injection
    • Dynamic prompt construction based on RAG results
    • Automatic conflict escalation through recursive feedback
  2. Optimized Retrieval
    # Hybrid search implementation
    def retrieve_context(self, query):
     return self.collection.query(
         query_texts=[query],
         where={"chapter": {"$gte": current_chapter-3}},
         n_results=3
     )
    
  3. Validation Layer

# validation.py
from pydantic import BaseModel, validator

class ChapterValidation(BaseModel):
    content: str
    mood_score: float
    conflict_count: int
    
    @validator('mood_score')
    def check_mood_consistency(cls, v):
        if v < 0.7:
            raise ValueError("Mood consistency too low")
        return v

Performance Optimization:

# quantization.py
from llama_cpp import Llama

llm = Llama(
    model_path="deepseek-70b.Q4_K_M.gguf",
    n_ctx=4096,
    n_gpu_layers=40
)

Testing Suite

# test_rag.py
def test_retrieval_relevance():
    rag = NarrativeRAG()
    rag.index_context("Test document", {"test": True})
    results = rag.retrieve_context("test query")
    assert len(results) == 1
    assert "Test document" in results

This implementation provides:

To run:

docker-compose up --build
curl -X POST -F "image=@cat.jpg" http://localhost:8000/generate

The system balances creative generation with technical rigor through:

  1. Multimodal input processing
  2. Contextual memory management
  3. Automated quality control
  4. Human-in-the-loop editing
  5. Scalable infrastructure design