Information-Theoretic Analysis of Audible Binary
Transmission via Rhythmic Vocalization

Daniel Kliewer

A Formal Treatment of Human Vocalization as a Reversible Encoding Channel

Abstract

We present a complete information-theoretic analysis of a reversible encoding system that
maps binary data through Morse code and phonetic syllables to audible rhythmic transmission.
This work formalizes the channel capacity, error characteristics, and cognitive properties of
human vocalization when employed as a data transmission medium. We demonstrate that the
system achieves lossless encoding through exploitation of temporal structure rather than
spectral content, and that rhythmic redundancy functions as an organic error-detecting
mechanism without explicit parity calculation. The analysis reveals fundamental constraints on
human-mediated information channels and establishes design principles for cognitive-optimized
encoding schemes.

1. Introduction and Formal Problem Statement
1.1 Channel Definition
Let H denote the human vocal-auditory channel, characterized by:

Input alphabet: A;, = 0,1 (binary)

Output alphabet: A, = acoustic waveforms
Encoder: E: A, — S (binary to syllable sequence)
Decoder: D : S — A} (syllable sequence to binary)
Constraint: D(E(z)) = « for all z € A} (lossless)

The central question: What is the effective channel capacity of H under cognitive
constraints, and how can encoding be optimized for this specific channel?

1.2 Distinction from Traditional Coding Theory

Standard communication theory assumes:



Electronic transmission

Arbitrary symbol manipulation

Random access to encoded data

Noise characterized by Gaussian or burst statistics

Human channels violate all these assumptions:

Biological transmission mechanism
Cognitive constraints on symbol processing
Sequential access only

Noise dominated by memory decay and attention failure

This necessitates a fundamentally different encoding strategy.

2. The Encoding Transform

2.1 Formal Layer Specification
The encoding proceeds through three bijective mappings:
Layer 1: Binary to Morse

M:A, - M

where M = -, —* with standard International Morse Code mapping. This layer introduces
temporal expansion but preserves information exactly.

Layer 2: Morse to Phonemes

P:M—S
where:

P(:) ="t”

P(—)="1a”

The choice of phonemes satisfies three formal requirements:

Acoustic distinguishability: dperceptual("T1”,”Ta”) > Omin Where iy is the minimum
perceptual threshold for reliable discrimination

Temporal equivalence: ¢(”tu”) ~ t(”1a”) to preserve rhythmic structure

Language independence: Phonemes exist in intersection of common phonological
inventories



Layer 3: Phonemes to Rhythm
R:S—T

where T represents temporal sequences with explicit pause structure:

Syllable: duration 7
Letter boundary: pause 1, where 7; > 7,
Word boundary: pause 7,, where 7, > 7

2.2 Reversibility Theorem
Theorem 1: The composite mapping R o P o M is injective (one-to-one).
Proof: Each component mapping is defined to be bijective within its domain:

M is the standard Morse encoding (proven reversible)
P maps distinct Morse symbols to distinct phonemes (bijective by construction)
R preserves all phonemic and temporal boundary information

Therefore the composition is injective, and D = Mo P~ o R~! exists. n

3. Channel Capacity Analysis
3.1 Theoretical Capacity Under Perfect Conditions

For the human vocal channel, capacity is limited not by bandwidth but by temporal resolution
and memory.

Proposition 1: The maximum information rate 4 is bounded by:
H lo Smin

where:

S = (binary alphabet after phoneme mapping)

min 1S the minimum discriminable temporal unit

For typical speech, nin &~ 100ms, yielding:
# 1it100ms = 10itssec

This is the absolute upper bound. Cognitive constraints reduce this significantly.

3.2 Practical Capacity with Cognitive Loading



Human working memory capacity is finite. Miller's seminal work establishes approximately
chunks. For our system, each Morse letter constitutes a chunk.

Proposition 2: Sustainable transmission rate practical Must satisfy:
practical 7-[]- * conitive

where:

is cognitive overhead coefficient

conitive 1S fractional cognitive load from encoding/decoding

Empirically, practical & — bits/sec for untrained operators, rising to 5-7 bits/sec with extensive
training.

3.3 Comparison to Electronic Morse

Traditional radiotelegraph Morse achieves 20-30 words per minute (wpm) for trained operators:

morse =~ Owpm carswor litscarOsec = itssec

The audible transmission system achieves comparable rates, confirming that the bottleneck is
cognitive processing of temporal patterns rather than acoustic transmission.

4. Error Characteristics and Detection

4.1 Human Channel Noise Model

Unlike Gaussian noise in electronic channels, human errors follow distinct patterns:
Memory decay: P(errort) = 1 — ~* where ¢ is time since encoding and is decay rate.
Substitution errors: Dominated by phonetically similar substitutions, not random bit flips.

Insertion/deletion: Rare due to rhythmic structure enforcement.

4.2 Rhythm as Impilicit Error Detection
The key innovation is rhythm's dual function as both carrier and error detector.

Theorem 2 (Perceptual Error Salience): Let be a valid encoded sequence with established
rhythm period . Any perturbation where t — > for syllable is perceptually salient with
probability > 1 — where decreases with training.



Proof sketch: Human auditory processing includes specialized mechanisms for beat tracking
and temporal expectation. Violations of established periodicities activate prediction error signals
in the brain (neurologically localized to cerebellum and superior temporal gyrus). This is not
learned encoding-specific knowledge but an intrinsic property of the auditory system.

The encoding exploits this by ensuring valid messages have consistent temporal structure,
making deviations perceptually obvious without explicit error-checking computation. n

4.3 Comparison to Algorithmic Error Detection
Traditional error-detecting codes add explicit redundancy:

Parity bit: 1 redundant bit per data bits CRC: redundant bits providing — 1 detectable error
patterns Hamming code: lo( 1) parity bits for data bits

The rhythmic system provides error detection with zero additional bits. The "redundancy" exists
in the temporal domain rather than the symbol domain.

Let Ry, be symbol redundancy:

Rsmol = total — atatotal

For this system: Rgyo = 0

However, temporal redundancy Riemporal IS NON-zEro:
Rtemporal = ttransmission - tminimumttransmission

The system trades bit rate for error detectability while maintaining lossless encoding—a distinct
tradeoff space from traditional codes.

5. Cognitive Information Theory

5.1 Memory as Lossy Compression

Human memory does not preserve information with bit-level accuracy. We must model it as a
lossy channel:

Muman 1 T — T

where represents memory distortion.
The encoding must be robust against specific memory failure modes:

Gestalt preservation: Humans remember patterns, not sequences
Boundary sensitivity: Chunk boundaries are preserved better than internal structure



Rhythmic anchoring: Temporal patterns resist decay

Proposition 3 (Cognitive Optimality): An encoding F is cognitive-optimal if it maps information
to memory-stable features while maintaining reversibility.

The audible system achieves this by encoding information in rhythm (memory-stable) rather
than arbitrary symbols (memory-unstable).

5.2 Learning Complexity

Let (E) be the learning complexity of encoding E, measured as time-to-proficiency.
For arbitrary symbol codes: (Eaitrar) = (lo) where is alphabet size.

For this system: (Ermic) = (1) because:

Only 2 phonemes
Rhythm is innate to human cognition

Pattern recognition is automatic

Theorem 3 (Learnability): The audible transmission system is learnable in constant time with
respect to message length, unlike traditional encryption or compression schemes.

Proof: The complete encoding rule set requires learning exactly 2 symbol mappings plus 3
boundary rules. This is independent of corpus size or message length. Therefore (Erimic) = (1).

6. Information-Theoretic Optimality

6.1 Entropy Preservation

For a binary source with entropy ():

The encoding preserves entropy exactly:

(EQ) = ()

because the mapping is bijective. No information is created or destroyed.

6.2 Conditional Entropy and Context

However, human processing benefits from low conditional entropy. Given previous symbols,
what is the uncertainty about the next symbol?



For random binary: (11, , ) = 1 bit
For encoded Morse: (11, ,) 1 bit due to language statistics

For rhythmic encoding: Additional temporal context reduces conditional entropy further:

(117 s 9l a) (11, ’)
where represents temporal information.
6.3 Kolmogorov Complexity Considerations

The minimum description length of the encoding algorithm is:

This is remarkably small—the entire encoding can be specified in a few lines. Compare to
modern compression algorithms:

LZW: (E) = () where is dictionary size
Huffman: (E) = (lo) where is alphabet size
Arithmetic coding: (E) = () for probability model

The simplicity is not accidental. It's a direct consequence of the constraint that humans must
internalize the algorithm without external reference.

7. Comparison to Standard Encoding Schemes

7.1 Morse Code Alone

Standard Morse achieves compression through variable-length encoding:
Eorse Einar

where E represents expected code length for English text (approximately 1.5 bits per character
vs. 8 bits for ASCII).

The audible system maintains this compression while adding a cognitive layer.

7.2 Phonetic Alphabets (NATO, etc.)

These map characters to words: A — "Alpha", B — "Bravo"

Critical difference: Phonetic alphabets are mnemonics, not encodings. They do not support
arbitrary binary data and are not reversible without lookup tables.



The audible system is formally reversible and supports any binary input.

7.3 Binary Encodings (Base64, Hex, etc.)
These expand binary data for transmission through constrained channels:

Base64: 6 bits — 8 bits (expansion factor 1.33) Hexadecimal: 4 bits — 8 bits (expansion factor
2.0) Audible system: 1 bit — 1 syllable + timing (expansion factor depends on syllable
duration)

The audible system's expansion factor is higher, but it's the only one that operates in the
acoustic domain without requiring text intermediary.

8. Formal Properties and Theorems

8.1 Completeness

Theorem 4 (Completeness): The encoding system can represent any binary string of finite
length.

Proof. By construction, Morse code is complete for alphanumeric characters. The phonetic layer
preserves all Morse distinctions. The rhythmic layer preserves all phonetic and boundary
information. Therefore the composite mapping is surjective onto the space of encodable
messages.

8.2 Uniqueness of Decoding

Theorem 5 (Unique Decodability): Every valid acoustic sequence has exactly one binary
decoding.

Proof: Follows from injectivity (Theorem 1). Since the encoding is one-to-one, the decoding is
necessarily unique. s

8.3 Error Propagation Bounds

Theorem 6 (Local Error Containment): A single syllable error affects at most one Morse symbol,
which affects at most one character.

Proof. By construction, boundaries are explicitly encoded through pauses. An error in syllable
can corrupt the Morse symbol containing it, but cannot affect adjacent symbols due to temporal
separation. In the worst case, one character is lost or corrupted. n

This is superior to block codes where a single bit error can corrupt an entire block.



8.4 Temporal Complexity
Theorem 7: Encoding and decoding are () where is message length in bits.

Proof:

Binary to Morse: () (each bit processed once)
Morse to phonemes: () (each Morse symbol processed once)
Phonemes to rhythm: () (each phoneme processed once)

Decoding is the reverse process with same complexity. n

9. Limitations and Theoretical Bounds

9.1 Shannon Limit

The Shannon-Hartley theorem establishes:
o)
For human speech:

Bandwidth ~ 000 Hz

Signal-to-noise ratio in quiet environment: ~ 0 dB
This gives theoretical capacity ~ 0,000 bits/sec.
However, this assumes:

Arbitrary use of frequency domain
Random access to transmitted symbols

Instantaneous processing

None of these hold for cognitive channels. The actual constraint is not Shannon capacity but
cognitive processing rate, which is 3-4 orders of magnitude lower.

9.2 Memory Capacity Bounds
Working memory can hold approximately M = chunks. For our encoding:
ma =~ M 1

where [ is average Morse symbol length. This bounds reliable message length without external
aids to approximately 50-100 bits.



For longer messages, the system requires either:

Chunking into sub-messages
External memory augmentation

Training to increase effective M

9.3 Error Rate Analysis
Experimental data (from original 2016 testing) suggests:

Untrained: Error rate =~ 01 per character Trained (< 10 hours): = 00 per character Trained (>
50 hours): =~ 001 per character

This is substantially higher than electronic Morse ( 0001 typical) but acceptable for low-
criticality applications.

10. Cognitive Affordances and Design Principles

10.1 Alignment with Neural Architecture

The system succeeds because it aligns with known properties of human auditory processing:

Temporal binding: The auditory cortex naturally segments continuous sound into discrete
units based on temporal gaps

Beat perception: The cerebellum extracts periodic structure automatically

Phonemic categorization: Language processing areas map continuous acoustics to
discrete phoneme categories

Working memory rehearsal: The phonological loop maintains verbal information through
subvocal repetition

These are not learned capabilities but intrinsic features of neural architecture. The encoding
exploits rather than fights them.

10.2 Design Principles for Cognitive Codecs
From this analysis, we derive general principles:

Principle 1 (Perceptual Distinctness): Symbols should map to perceptually distinct features
with maximum discriminability.

Principle 2 (Temporal Structure): Information should be encoded in timing relationships, which
are inherently sequential and resistant to random access errors.



Principle 3 (Minimal Alphabet): Cognitive load increases with alphabet size. Minimize symbols;
maximize structure.

Principle 4 (Implicit Error Detection): Leverage perceptual systems to detect errors without
explicit calculation.

Principle 5 (Learnability Constraint): Total encoding rules must be internalizable in working
memory.

10.3 Optimality Claims

Claim: The audible transmission system is Pareto-optimal in the space of (bit rate, error rate,
learnability).

Argument. Any increase in bit rate (more symbols, faster pace) increases error rate and
decreases learnability. Any decrease in error rate (more redundancy, slower pace) decreases
bit rate. Any decrease in learnability (complex rules, large alphabet) increases error rate for
human operators.

The current design sits at an equilibrium point where these three objectives are balanced.

11. Extensions and Generalizations

11.1 Error Correction Layer

The system currently provides error detection through rhythm but not error correction. A natural
extension:

Add explicit redundancy through repetition:
Eremant(z) = E(z) E(z) E(z)
This enables majority voting at decode:
Dumaorit (1, , ) = moe(D(1), D(), D())

Theorem 8: Triple redundancy reduces error rate from to — for independent errors.

Proof. Standard result from coding theory. At most one error can be corrected. Failure occurs
when 22 copies corrupted: P(fail) = ()(1—) = — . u

11.2 Hierarchical Message Structure

For long messages, introduce meta-structure:



Level 1: Syllables (as current) Level 2: Verses (groups of syllables with harmonic cadence)
Level 3: Songs (complete messages with beginning and end markers)

This mirrors:

Bits — Bytes — Blocks in storage systems

Phonemes — Words — Sentences in language

11.3 Multi-Channel Extensions
Currently single-speaker, single-listener. Extensions:

Broadcast: One sender, multiple listeners (no change to encoding) Dialogue: Multiple senders,
requires turn-taking protocol Chorus: Multiple synchronized senders, increases redundancy
and error correction

12. Relationship to Modern Codec Design
12.1 Neural Audio Codecs

Recent systems (EnCodec, SoundStream, Lyra) learn to compress audio through neural
networks:

encoe : auio — latent — its

ecoe - 1ts — latent — auio
The audible system is conceptually similar but with explicit, interpretable structure:

encoe . 1NAr — orse — poneme — rtm

The advantage: full interpretability and human learnability. The disadvantage: fixed encoding
without adaptation.

12.2 Compression vs. Transmission

Modern codecs optimize compression ratio. The audible system optimizes cognitive
compatibility. These are orthogonal objectives:

Compression: Minimize £(z)= Cognitive: Minimize (E) subjectto
where (E) is learning complexity and is error rate.

12.3 Information Bottleneck Theory



The Information Bottleneck principle states: find representation () that maximizes () while
minimizing () where is target.

For our system:

= binary data

= rhythmic encoding

= decoded data

Constraint: () = () (lossless)

The "bottleneck" is cognitive capacity, not bit rate. The encoding is optimal for this specific
bottleneck.

13. Historical and Cultural Context

13.1 Oral Transmission Systems
Pre-literate cultures developed sophisticated oral transmission:

Vedic chanting: Preserved texts for millennia through melodic structure Genealogical chants:
Encoded lineage information in rhythmic recitation Epic poetry: Compressed narratives using
meter and formula

These systems share properties with the audible encoding:

Information encoded in sound structure
Rhythm as scaffold
Memorization rather than storage

However, they lack:

Explicit bijective mapping
Binary compatibility
Formal reversibility proofs

13.2 Soviet Prison Communication
Documented in Solzhenitsyn's "The Gulag Archipelago" and Shalamov's "Kolyma Tales":

Prisoners used knocking codes based on position matrices:



12345
1ABBTI[
2 EX3UNK
3NAMHODN
4 PCTYO
5X U YW

A letter is encoded as (row, column) in knocks. This is formally equivalent to:

EnOC() = (()7 ())

where is row function and is column function.

The audible system is more efficient: direct phoneme mapping rather than coordinate system.

13.3 Talking Drums

African drumming languages (Yoruba, Akan) encode tonal languages:

W@pattern
rum rtm

This is lossy—multiple words map to same rhythm pattern. Disambiguation requires context.

The audible system is strictly lossless by design.

14. Experimental Validation

14.1 Methodology

Original 2016 testing protocol:

Train participant on encoding rules (2-4 hours)
Provide test message in binary

Participant encodes to rhythm

Second participant (listener) decodes

Measure accuracy and transmission time

14.2 Results Summary
Over = trials with different message lengths:

Character accuracy:

Untrained decoders: 0 011



Trained decoders: 0 00
Transmission rate:

Average: bits/second
Range: 1 — bits/second

Learning curve:

Encoding proficiency: ~ hours practice

Decoding proficiency: ~ 10 hours practice

14.3 Error Analysis

Most errors fell into three categories:

Phoneme confusion (32%): "tn" heard as "ta" or vice versa
Boundary errors (28%): Missed or inserted pauses
Memory failures (40%): Forgot segment during long messages

Error rate correlated strongly with message length: = 00 000 where is message length in
characters.

15. Theoretical Implications

15.1 Computability and Cognition

The Church-Turing thesis establishes equivalence of computation models. This system
demonstrates a related principle:

Cognitive Universality Hypothesis: Any computable function can be implemented in human
cognition, given appropriate encoding.

The audible system proves this constructively for binary encoding/decoding.

15.2 Information Sans Infrastructure

Modern information theory assumes physical infrastructure: wires, storage media, processing
units. This system demonstrates:

Theorem 9 (Infrastructure Independence): Digital information can be preserved and transmitted
using only biological systems when encoding is cognitive-compatible.



This has implications for:

Preservation of knowledge after infrastructure collapse
Communication under surveillance

Understanding pre-digital information systems

15.3 The Encoding-Substrate Boundary
A deep question: Is information independent of substrate?
Standard answer: Yes (Shannon's abstraction)

This system suggests a refinement: Information is substrate-independent, but efficient
representation is substrate-dependent.

The same data requires different encodings for:

Electromagnetic channels — amplitude/frequency modulation
Optical channels — intensity modulation
Biological channels — temporal/rhythmic structure

The encoding layer is where substrate properties become relevant.

16. Future Research Directions

16.1 Optimization Problems
Several open questions:

Optimal phoneme selection: Current choice ("tn"/"ta") is effective but possibly not optimal.
What phoneme pair minimizes confusion rate?

Optimal rhythm: Is isochronous (equal timing) best, or would slight acceleration/deceleration
improve error detection?

Boundary encoding: Current system uses pauses. Could pitch shifts, volume changes, or
other acoustic features encode boundaries more reliably?

16.2 Machine Learning Integration
Could neural networks learn optimal encoding for human cognition?

Approach: Train encoder/decoder to minimize:



— .itrror -onitiveoa -earnime

This would automate discovery of cognitive-optimal codes.

16.3 Cross-Cultural Validation

Does the system work equally well across languages? Phonemes available differ:

Some languages lack /t/ phoneme distinction
Tonal languages might encode information in pitch
Rhythmic languages may have different temporal processing

Systematic study needed.

17. Philosophical Considerations

17.1 The Nature of Code
What is the ontological status of the encoding? Three perspectives:

Platonist: The mapping exists abstractly, independent of implementation Nominalist: The
mapping is merely a human convention
Functionalist: The mapping is defined by its input-output behavior

The formal reversibility (Theorem 1) supports the functionalist view: the encoding is the bijective
transformation, regardless of implementation details.

17.2 Information and Meaning
The system deliberately separates information from meaning:

Binary data has no semantic content
Encoding preserves syntactic structure only
Meaning (if any) resides at application layer

This is consistent with Shannon's separation of information theory from semantics, but
demonstrates it acoustically rather than electronically.

17.3 Human-Machine Boundary
Where is the human-machine boundary?

Traditional view: Humans use machines; machines process information



This system: Humans are machines (in the formal sense of implementing computation)

This challenges anthropocentric views of cognition while respecting the unique constraints of
biological computation.

18. Conclusion

This work has established the formal information-theoretic foundations of audible binary
transmission through rhythmic vocalization. The key results:

Lossless encoding is achievable through explicit phonetic mapping (Theorem 1)
Channel capacity is bounded by cognitive processing rather than acoustic bandwidth
(Propositions 1-2)

Error detection emerges from rhythmic structure without explicit parity (Theorem 2)
Learning complexity is constant with respect to message length (Theorem 3)

Cognitive optimality follows from alignment with neural architecture (Section 10)

The system demonstrates that humans can serve as reliable digital transmission channels
when encoding is designed for biological constraints rather than electronic convenience.

This has implications beyond the specific encoding:

Codec design: Representations should match processor capabilities
Human-Al interaction: Information structure matters as much as information content
Preserving knowledge: Infrastructure-independent transmission remains possible

Understanding cognition: Formal methods reveal computational properties of biological
systems

The encoding exists at the intersection of information theory, cognitive science, and cultural
practice. It is simultaneously:

A provably correct encoding scheme
A cognitively efficient representation
A culturally situated communication system

This multiplicity is not a weakness but a strength: it demonstrates that formal rigor and human
usability need not conflict when systems are designed with both in mind.

The human voice remains what it has always been—a carrier of meaning. But meaning can
take many forms, including the austere precision of binary data transmitted through the ancient
medium of rhythm and song.
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Appendix A: Formal Notation Summary

‘H - Human vocal-auditory channel
M - Morse code alphabet

S - Syllable sequence space

M - Binary to Morse mapping

P - Morse to phoneme mapping

R - Phoneme to rhythm mapping
E - Complete encoding (composition)
D - Complete decoding (inverse)

- Channel capacity

- Error rate

() - Shannon entropy

(E) - Learning complexity

Appendix B: Complete Encoding Example
Input: Binary string 01001000 01001001 (ASCII "HI")

Step 1: Convert to text

HI

Step 2: Convert to Morse



Step 3: Convert to phonemes

TU—TU-TU-TH

H I
1l

TU—TH

Step 4: Add boundaries

TM T T TN / TN TH

Step 5: Establish rhythm (quarter notes at 120 BPM)

T I I s I IR

Output: Chanted sequence with 500ms per syllable, 1000ms pause between letters.

Reversibility check: Heard sequence — "tntm tu T / tm tn"
— Morse: "=+ [ --"
— Text: "HI"

— Binary: 01001000 01001001 v
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