Creating a Multi-Model AI Agent that monitors a user’s Instagram posts, generates detailed descriptions from images, summarizes the user’s persona, and finally crafts a comprehensive blog post based on their activity is an ambitious and rewarding project. This guide will walk you through the entire process, breaking it down into manageable steps with code examples to help you implement each component effectively.


Table of Contents

  1. Project Overview
  2. Tools and Technologies
  3. Setting Up the Development Environment
  4. Obtaining Instagram API Credentials
  5. Fetching Instagram Posts
  6. Converting Images to Text Descriptions
  7. Summarizing User Persona
  8. Generating the Blog Post
  9. Orchestrating the Workflow
  10. Handling Storage and Data Management
  11. Scheduling and Automation
  12. Error Handling and Logging
  13. Deployment Considerations
  14. Ethical and Privacy Considerations
  15. Conclusion

Project Overview

The goal is to develop an AI-driven pipeline that performs the following tasks:

  1. Monitor Instagram Posts: Continuously fetch a user’s recent Instagram posts (images and captions).
  2. Image-to-Text Conversion: Use a multimodal model to convert each image into a detailed text description.
  3. Persona Summarization: Aggregate these descriptions to create a summary profile of the user.
  4. Blog Post Generation: Utilize a Large Language Model (LLM) to generate a blog post based on the summarized persona and recent activity.

This pipeline leverages multiple AI models and integrates them into a seamless workflow to automate content generation.


Tools and Technologies

To build this multi-model AI agent, you’ll need to utilize several tools and libraries:


Setting Up the Development Environment

  1. Install Python: Ensure you have Python 3.8 or later installed. You can download it from Python’s official website.

  2. Create a Project Directory:
    mkdir InstagramPersonaBlogGenerator
    cd InstagramPersonaBlogGenerator
    
  3. Initialize a Virtual Environment:
    python3 -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  4. Install Required Packages:
    pip install requests python-dotenv Pillow openai schedule
    
  5. Create Essential Files and Directories:
    mkdir utils agents workflows
    touch main.py
    touch .env
    
  6. Initialize Git (Optional):
    git init
    echo "venv/" >> .gitignore
    echo ".env" >> .gitignore
    

Obtaining Instagram API Credentials

To interact with Instagram programmatically, you’ll need to use the Instagram Graph API, which is part of Facebook’s suite of developer tools.

Steps to Obtain Credentials:

  1. Create a Facebook Developer Account:
  2. Create a New App:
    • In the dashboard, click on “Create App”.
    • Select “Business” as the app type and click “Next”.
    • Enter an App Name, Contact Email, and choose a Business Account if prompted.
    • Click “Create App”.
  3. Add Instagram Basic Display and Instagram Graph API:
    • In your app dashboard, click “Add Product”.
    • Select “Instagram” and set up both the Instagram Basic Display and Instagram Graph API products.
  4. Configure Instagram Graph API:
    • Set Up Instagram Business Account:
      • Convert your Instagram account to a Business or Creator account if it’s not already.
      • Link your Instagram account to a Facebook Page.
    • Generate Access Tokens:
  5. Set Up Permissions:
    • Request the necessary permissions such as instagram_basic, pages_show_list, ads_management, etc., depending on your application’s needs.
    • App Review: If your app is intended for public use, submit it for review to obtain necessary permissions.
  6. Update .env File:
    INSTAGRAM_ACCESS_TOKEN=your_instagram_access_token
    INSTAGRAM_USER_ID=your_instagram_user_id
    OPENAI_API_KEY=your_openai_api_key
    
    • Security Reminder: Ensure .env is added to .gitignore to prevent sensitive information from being exposed.

Fetching Instagram Posts

With your Instagram API credentials in place, you can now fetch a user’s recent posts.

Instagram Graph API Endpoints:

Implementation Steps:

  1. Create a Utility Function to Fetch Posts:

    # utils/instagram_fetcher.py
    
    import requests
    import os
    import logging
    from dotenv import load_dotenv
    
    load_dotenv()
    
    INSTAGRAM_ACCESS_TOKEN = os.getenv("INSTAGRAM_ACCESS_TOKEN")
    INSTAGRAM_USER_ID = os.getenv("INSTAGRAM_USER_ID")
    INSTAGRAM_API_URL = "https://graph.instagram.com"
    
    # Configure logging
    logging.basicConfig(
        filename='instagram_fetcher.log',
        level=logging.INFO,
        format='%(asctime)s %(levelname)s:%(message)s'
    )
    
    def fetch_recent_posts(limit=10):
        endpoint = f"{INSTAGRAM_API_URL}/{INSTAGRAM_USER_ID}/media"
        params = {
            'fields': 'id,caption,media_type,media_url,permalink,timestamp',
            'access_token': INSTAGRAM_ACCESS_TOKEN,
            'limit': limit
        }
        try:
            response = requests.get(endpoint, params=params)
            response.raise_for_status()
            media = response.json().get('data', [])
            logging.info(f"Fetched {len(media)} posts.")
            return media
        except requests.exceptions.HTTPError as http_err:
            logging.error(f"HTTP error occurred: {http_err}")
        except Exception as err:
            logging.error(f"Other error occurred: {err}")
        return []
    
  2. Test Fetching Posts:

    # test_instagram_fetcher.py
    
    from utils.instagram_fetcher import fetch_recent_posts
    
    if __name__ == "__main__":
        posts = fetch_recent_posts(limit=5)
        for post in posts:
            print(f"ID: {post['id']}")
            print(f"Caption: {post.get('caption', 'No Caption')}")
            print(f"Media Type: {post['media_type']}")
            print(f"Media URL: {post['media_url']}")
            print(f"Permalink: {post['permalink']}")
            print(f"Timestamp: {post['timestamp']}")
            print("-" * 40)
    
    • Run the Test:
      python test_instagram_fetcher.py
      
    • Expected Output: A list of recent posts with their details.

Converting Images to Text Descriptions

To convert images into detailed text descriptions, you can utilize OpenAI’s GPT-4 with multimodal capabilities or other image captioning models like CLIP or BLIP.

Using OpenAI’s GPT-4 (Assuming Multimodal Support)

Note: As of my knowledge cutoff in September 2021, GPT-4’s multimodal capabilities were not available. Ensure you have access to the latest OpenAI models that support image inputs.

  1. Install OpenAI’s Latest SDK:
    pip install --upgrade openai
    
  2. Utility Function for Image-to-Text Conversion:

    # utils/image_to_text.py
    
    import openai
    import os
    import logging
    
    # Configure logging
    logging.basicConfig(
        filename='image_to_text.log',
        level=logging.INFO,
        format='%(asctime)s %(levelname)s:%(message)s'
    )
    
    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
    openai.api_key = OPENAI_API_KEY
    
    def convert_image_to_text(image_url):
        try:
            # Download the image
            response = requests.get(image_url)
            response.raise_for_status()
            image_data = response.content
    
            # Convert image to text using OpenAI's API
            # Placeholder for actual multimodal API call
            # Replace with actual API endpoint and parameters
            response = openai.Image.create(
                file=image_data,
                purpose='image_captioning'
            )
            caption = response.get('caption', 'No caption generated.')
            logging.info(f"Generated caption: {caption}")
            return caption
        except Exception as e:
            logging.error(f"Error converting image to text: {e}")
            return "Description not available."
    
    • Important: Replace the placeholder API call with the actual method provided by OpenAI for image captioning if available. As of now, you might need to use alternative models like BLIP or CLIP.

Using Alternative Models (e.g., BLIP)

If OpenAI’s GPT-4 does not support image inputs yet, consider using other models like BLIP (Bootstrapping Language-Image Pre-training) for image captioning.

  1. Install Required Libraries:
    pip install transformers
    pip install torch
    
  2. Utility Function with BLIP:

    # utils/image_to_text_blip.py
    
    from transformers import BlipProcessor, BlipForConditionalGeneration
    from PIL import Image
    import requests
    import logging
    
    # Configure logging
    logging.basicConfig(
        filename='image_to_text_blip.log',
        level=logging.INFO,
        format='%(asctime)s %(levelname)s:%(message)s'
    )
    
    # Initialize BLIP processor and model
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    
    def convert_image_to_text_blip(image_url):
        try:
            # Download the image
            response = requests.get(image_url)
            response.raise_for_status()
            image = Image.open(BytesIO(response.content)).convert('RGB')
    
            # Process the image and generate caption
            inputs = processor(image, return_tensors="pt")
            out = model.generate(**inputs)
            caption = processor.decode(out[0], skip_special_tokens=True)
            logging.info(f"Generated caption: {caption}")
            return caption
        except Exception as e:
            logging.error(f"Error converting image to text with BLIP: {e}")
            return "Description not available."
    
    • Usage:
      # test_image_to_text_blip.py
      
      from utils.image_to_text_blip import convert_image_to_text_blip
      
      if __name__ == "__main__":
          image_url = "https://example.com/path-to-image.jpg"
          caption = convert_image_to_text_blip(image_url)
          print(f"Caption: {caption}")
      
    • Run the Test:
      python test_image_to_text_blip.py
      
    • Expected Output: A generated caption describing the image.

Summarizing User Persona

Once you have text descriptions of the user’s posts, the next step is to summarize these into a coherent persona profile.

Implementation Steps:

  1. Aggregate Descriptions: Collect all text descriptions generated from images and captions.

  2. Summarize with OpenAI’s GPT-4:

    # utils/summarize_persona.py
    
    import openai
    import os
    import logging
    
    # Configure logging
    logging.basicConfig(
        filename='summarize_persona.log',
        level=logging.INFO,
        format='%(asctime)s %(levelname)s:%(message)s'
    )
    
    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
    openai.api_key = OPENAI_API_KEY
    
    def summarize_persona(descriptions):
        try:
            aggregated_text = "\n".join(descriptions)
            prompt = (
                "Based on the following descriptions of a person's Instagram posts, create a comprehensive "
                "summary profile of the individual, highlighting their interests, personality traits, and "
                "lifestyle.\n\nDescriptions:\n"
                f"{aggregated_text}\n\nPersona Summary:"
            )
            response = openai.ChatCompletion.create(
                model="gpt-4",
                messages=[{"role": "user", "content": prompt}],
                temperature=0.7,
                max_tokens=500
            )
            summary = response.choices[0].message.content.strip()
            logging.info("Persona summary generated successfully.")
            return summary
        except Exception as e:
            logging.error(f"Error summarizing persona: {e}")
            return "Persona summary not available."
    
  3. Usage Example:

    # test_summarize_persona.py
    
    from utils.summarize_persona import summarize_persona
    
    if __name__ == "__main__":
        descriptions = [
            "Post titled 'Sunset at the Beach': A beautiful sunset captured over the Pacific Ocean, highlighting vibrant oranges and purples.",
            "Comment: Loved your photo! The colors are stunning.",
            "Post titled 'Mountain Hike': Trekking through the Rocky Mountains, surrounded by snow-capped peaks and lush greenery."
        ]
        summary = summarize_persona(descriptions)
        print(f"Persona Summary:\n{summary}")
    
    • Run the Test:
      python test_summarize_persona.py
      
    • Expected Output: A detailed summary profile of the user based on their Instagram activity.

Generating the Blog Post

With a summarized persona, you can now generate a blog post that encapsulates the user’s Instagram activity and persona.

Implementation Steps:

  1. Utility Function to Generate Blog Post:

    # utils/generate_blog_post.py
    
    import openai
    import os
    import logging
    
    # Configure logging
    logging.basicConfig(
        filename='generate_blog_post.log',
        level=logging.INFO,
        format='%(asctime)s %(levelname)s:%(message)s'
    )
    
    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
    openai.api_key = OPENAI_API_KEY
    
    def generate_blog_post(persona_summary):
        try:
            prompt = (
                "Write a detailed blog post about a person's recent Instagram activity based on the following "
                "persona summary.\n\nPersona Summary:\n"
                f"{persona_summary}\n\nBlog Post:"
            )
            response = openai.ChatCompletion.create(
                model="gpt-4",
                messages=[{"role": "user", "content": prompt}],
                temperature=0.8,
                max_tokens=1500
            )
            blog_post = response.choices[0].message.content.strip()
            logging.info("Blog post generated successfully.")
            return blog_post
        except Exception as e:
            logging.error(f"Error generating blog post: {e}")
            return "Blog post not available."
    
  2. Usage Example:

    # test_generate_blog_post.py
    
    from utils.summarize_persona import summarize_persona
    from utils.generate_blog_post import generate_blog_post
    
    if __name__ == "__main__":
        descriptions = [
            "Post titled 'Sunset at the Beach': A beautiful sunset captured over the Pacific Ocean, highlighting vibrant oranges and purples.",
            "Comment: Loved your photo! The colors are stunning.",
            "Post titled 'Mountain Hike': Trekking through the Rocky Mountains, surrounded by snow-capped peaks and lush greenery."
        ]
        persona_summary = summarize_persona(descriptions)
        blog_post = generate_blog_post(persona_summary)
        print(f"Blog Post:\n{blog_post}")
    
    • Run the Test:
      python test_generate_blog_post.py
      
    • Expected Output: A well-structured blog post summarizing the user’s Instagram activity and persona.

Orchestrating the Workflow

To bring all the components together, orchestrate the workflow in your main.py script.

main.py

# main.py

import os
from dotenv import load_dotenv
from utils.instagram_fetcher import fetch_recent_posts
from utils.image_to_text_blip import convert_image_to_text_blip
from utils.summarize_persona import summarize_persona
from utils.generate_blog_post import generate_blog_post
import logging
import schedule
import time

# Configure logging
logging.basicConfig(
    filename='main.log',
    level=logging.INFO,
    format='%(asctime)s %(levelname)s:%(message)s'
)

def run_agent():
    logging.info("Agent started.")
    print("\n=== Instagram Persona Blog Generator ===\n")

    # Fetch recent Instagram posts
    posts = fetch_recent_posts(limit=10)
    if not posts:
        print("No recent Instagram activity found.")
        logging.info("No recent Instagram activity found.")
        return

    # Convert images to text descriptions
    descriptions = []
    for post in posts:
        media_type = post.get('media_type')
        media_url = post.get('media_url')
        caption = post.get('caption', '')
        if media_type in ['IMAGE', 'CAROUSEL_ALBUM', 'VIDEO']:
            description = convert_image_to_text_blip(media_url)
            if caption:
                description += f" Caption: {caption}"
            descriptions.append(description)
            print(f"Processed Post ID: {post['id']}")
        else:
            print(f"Unsupported media type for Post ID: {post['id']}")
            logging.warning(f"Unsupported media type for Post ID: {post['id']}")

    if not descriptions:
        print("No descriptions generated from posts.")
        logging.info("No descriptions generated from posts.")
        return

    # Summarize user persona
    persona_summary = summarize_persona(descriptions)
    print("\nPersona Summary Generated.\n")
    logging.info("Persona summary generated.")

    # Generate blog post
    blog_post = generate_blog_post(persona_summary)
    if blog_post:
        # Save blog post locally
        save_blog_post(blog_post)
    else:
        print("Failed to generate blog post.")
        logging.error("Failed to generate blog post.")

    logging.info("Agent completed.")

def save_blog_post(blog_content):
    try:
        os.makedirs('blog_posts', exist_ok=True)
        timestamp = time.strftime("%Y%m%d-%H%M%S")
        filename = f"blog_posts/blog_post_{timestamp}.md"
        with open(filename, 'w', encoding='utf-8') as f:
            f.write(blog_content)
        print(f"Blog post saved successfully at {filename}")
        logging.info(f"Blog post saved at {filename}")
    except Exception as e:
        print(f"Error saving blog post: {e}")
        logging.error(f"Error saving blog post: {e}")

if __name__ == "__main__":
    # Optionally, schedule the agent to run daily at a specific time
    # For immediate run, call run_agent() directly
    run_agent()

    # Uncomment below to schedule
    # schedule.every().day.at("09:00").do(run_agent)
    # print("Scheduled the agent to run daily at 09:00 AM.")

    # while True:
    #     schedule.run_pending()
    #     time.sleep(60)  # wait one minute

Explanation


Handling Storage and Data Management

Efficient storage and management of data are crucial for scalability and maintainability.

Options:

  1. Local Storage:
    • JSON Files: Store fetched posts and generated descriptions.
    • SQLite Database: Manage data more efficiently with structured storage.
  2. Cloud Storage:
    • AWS S3: Store images and blog posts.
    • Google Cloud Storage: Alternative cloud storage solution.

Example: Using SQLite for Data Management

  1. Install SQLite Library:
    pip install sqlite3
    
  2. Utility Functions for Database Operations:

    # utils/database.py
    
    import sqlite3
    import logging
    
    # Configure logging
    logging.basicConfig(
        filename='database.log',
        level=logging.INFO,
        format='%(asctime)s %(levelname)s:%(message)s'
    )
    
    def initialize_db(db_name='instagram_data.db'):
        conn = sqlite3.connect(db_name)
        cursor = conn.cursor()
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS posts (
                id TEXT PRIMARY KEY,
                caption TEXT,
                media_type TEXT,
                media_url TEXT,
                permalink TEXT,
                timestamp TEXT,
                description TEXT
            )
        ''')
        conn.commit()
        conn.close()
        logging.info("Database initialized.")
    
    def insert_post(post):
        try:
            conn = sqlite3.connect('instagram_data.db')
            cursor = conn.cursor()
            cursor.execute('''
                INSERT OR IGNORE INTO posts (id, caption, media_type, media_url, permalink, timestamp, description)
                VALUES (?, ?, ?, ?, ?, ?, ?)
            ''', (
                post['id'],
                post.get('caption', ''),
                post['media_type'],
                post['media_url'],
                post['permalink'],
                post['timestamp'],
                post.get('description', '')
            ))
            conn.commit()
            conn.close()
            logging.info(f"Inserted Post ID: {post['id']}")
        except Exception as e:
            logging.error(f"Error inserting post ID {post['id']}: {e}")
    
    def update_post_description(post_id, description):
        try:
            conn = sqlite3.connect('instagram_data.db')
            cursor = conn.cursor()
            cursor.execute('''
                UPDATE posts
                SET description = ?
                WHERE id = ?
            ''', (description, post_id))
            conn.commit()
            conn.close()
            logging.info(f"Updated description for Post ID: {post_id}")
        except Exception as e:
            logging.error(f"Error updating description for Post ID {post_id}: {e}")
    
  3. Integrate Database Operations in main.py:

    # main.py (Additions)
    
    from utils.database import initialize_db, insert_post, update_post_description
    
    def run_agent():
        initialize_db()
        # ... existing code ...
    
        # After fetching posts
        for post in posts:
            insert_post(post)
            media_type = post.get('media_type')
            media_url = post.get('media_url')
            caption = post.get('caption', '')
            if media_type in ['IMAGE', 'CAROUSEL_ALBUM', 'VIDEO']:
                description = convert_image_to_text_blip(media_url)
                if caption:
                    description += f" Caption: {caption}"
                descriptions.append(description)
                update_post_description(post['id'], description)
                print(f"Processed Post ID: {post['id']}")
            else:
                print(f"Unsupported media type for Post ID: {post['id']}")
                logging.warning(f"Unsupported media type for Post ID: {post['id']}")
    

Scheduling and Automation

To ensure that the AI agent runs periodically (e.g., daily), implement scheduling using the schedule library.

Implementation Steps:

  1. Modify main.py for Scheduling:

    # main.py (Additions)
    
    import schedule
    
    def main():
        # Initial run
        run_agent()
    
        # Schedule the agent to run daily at 09:00 AM
        schedule.every().day.at("09:00").do(run_agent)
        print("Scheduled the agent to run daily at 09:00 AM.")
        logging.info("Agent scheduled to run daily at 09:00 AM.")
    
        while True:
            schedule.run_pending()
            time.sleep(60)  # Check every minute
    
  2. Run the Script in the Background:

    • Option 1: Use a process manager like pm2 or supervisord to keep the script running.
    • Option 2: Run the script in a screen or tmux session.
    • Option 3: Deploy the script on a cloud server with appropriate uptime guarantees.

Error Handling and Logging

Robust error handling and comprehensive logging are essential for maintaining the health of your AI agent.

Best Practices:

  1. Use Try-Except Blocks: Wrap API calls and critical operations in try-except blocks to catch and handle exceptions gracefully.

  2. Logging Levels:
    • INFO: General operational messages.
    • WARNING: Indications of potential issues.
    • ERROR: Errors that prevent normal operation.
    • CRITICAL: Severe errors causing termination.
  3. Centralized Logging:
    • Use separate log files for different modules or combine them based on preference.
    • Implement log rotation to prevent log files from growing indefinitely.
  4. Alerts and Notifications:
    • Integrate with services like Slack, Email, or PagerDuty to receive real-time alerts on critical failures.

Deployment Considerations

Deploying your AI agent ensures it runs reliably without manual intervention.

Options:

  1. Cloud Servers:
    • AWS EC2, Google Cloud Compute Engine, Azure Virtual Machines: Deploy your script on a virtual machine.
  2. Serverless Functions:
    • AWS Lambda, Google Cloud Functions, Azure Functions: Suitable for event-driven executions.
    • Note: May require adjustments for persistent tasks like scheduling.
  3. Containers:
    • Docker: Containerize your application for portability.
    • Kubernetes: Orchestrate multiple containers for scalability.
  4. CI/CD Pipelines:
    • Integrate with GitHub Actions, GitLab CI/CD for automated deployments.

Deployment Steps:

  1. Containerization with Docker:

    • Create a Dockerfile:
      # Dockerfile
      
      FROM python:3.9-slim
      
      WORKDIR /app
      
      COPY requirements.txt requirements.txt
      RUN pip install --no-cache-dir -r requirements.txt
      
      COPY . .
      
      CMD ["python", "main.py"]
      
    • Create requirements.txt:
      pip freeze > requirements.txt
      
    • Build and Run the Docker Container:
      docker build -t instagram-persona-blog-generator .
      docker run -d --name blog_generator instagram-persona-blog-generator
      
  2. Using Process Managers:

    • Install PM2:
      npm install pm2 -g
      
    • Start the Script with PM2:
      pm2 start main.py --interpreter=python3
      pm2 save
      pm2 startup
      
  3. Set Up Automatic Restarts:

    • Ensure that your deployment method supports automatic restarts on failures or server reboots.

Ethical and Privacy Considerations

When handling user data, especially from social media platforms, it’s crucial to adhere to ethical standards and privacy laws.

Key Considerations:

  1. Consent:
    • Ensure you have explicit permission to access and process the user’s Instagram data.
  2. Data Security:
    • Store access tokens and sensitive information securely.
    • Encrypt data at rest and in transit where applicable.
  3. Compliance with Instagram Policies:
    • Adhere to Instagram’s Platform Policy to avoid violations that could lead to API access revocations.
  4. Data Minimization:
    • Collect only the data necessary for the application’s functionality.
  5. Transparency:
    • Inform users about how their data is being used, stored, and processed.
  6. Opt-Out Mechanisms:
    • Provide users with options to revoke access or delete their data from your system.

Conclusion

Building a Multi-Model AI Agent that monitors Instagram posts, generates descriptive summaries, and crafts insightful blog posts is a multifaceted project that leverages the power of modern AI and API integrations. By following this guide, you’ve set up a robust pipeline that automates content analysis and generation, providing valuable insights into user behavior and facilitating effortless blog content creation.

Recap of Steps:

  1. Set Up Development Environment: Installed necessary tools and libraries.
  2. Obtain API Credentials: Secured access to Instagram’s Graph API and OpenAI’s services.
  3. Fetch Instagram Posts: Implemented functions to retrieve recent posts.
  4. Convert Images to Text: Utilized multimodal models like BLIP for image captioning.
  5. Summarize Persona: Aggregated descriptions to create a user persona profile.
  6. Generate Blog Post: Leveraged GPT-4 to craft a comprehensive blog post.
  7. Orchestrate Workflow: Combined all components into a seamless pipeline.
  8. Handle Storage and Data: Managed data using SQLite for structured storage.
  9. Implement Scheduling: Automated the agent’s execution using the schedule library.
  10. Ensure Robustness: Added error handling and logging for maintenance and debugging.
  11. Deploy the Agent: Considered deployment options for reliable operation.
  12. Adhere to Ethics and Privacy: Emphasized responsible data handling practices.

Future Enhancements:

Embarking on this project not only enhances your technical prowess but also opens doors to innovative content management and creation strategies. Happy Coding!


Additional Resources:

Feel free to reach out if you encounter any challenges or have further questions as you develop your AI agent!